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1 
Preface 

The Gap Analysis Program (GAP) is a U.S. Geological Survey project being implemented nationwide 
with the help of more than 400 cooperators, including the private sector, nonprofit organizations, and 
government agencies. The purpose of GAP is to identify gaps in the network of conservation lands with 
respect to land cover or habitat types as well as individual vertebrate species and to build partnerships around 
the development and application of this information (Scott et al. 1993). 

Gap Analysis is conducted by combining the distribution of actual natural vegetation, mapped from 
satellite imagery and other data sources, with distributions of vertebrate and other taxa as indicators of 
biodiversity. The data are manipulated and displayed using computerized geographic information systems. 
Maps of species-rich areas, individual species of concern, and overall vegetation types are generated. Using 
geographic information systems, this information can be analyzed to show where land-based conservation 
efforts need to be focused to achieve conservation of overall biodiversity most efficiently. 

The U.S. Geological Survey Environmental Management Technical Center facilitates the Upper Midwest 
GAP (UMGAP), a cooperative effort with the states of Illinois, Michigan, Minnesota, and Wisconsin. 
Mapping support is also provided to the states of Indiana and Iowa in an effort to produce a common 
database for the Upper Midwest region. 

The protocol describes both the underlying philosophy and the operational details of the land cover 
classification activities being performed as part of UMGAP. Topics discussed include the hierarchical 
classification scheme, ground reference data acquisition, image stratification, and classification techniques. 
This discussion is primarily aimed at the image processing analysts involved in the UMGAP land cover 
mapping activities as well as others involved in similar projects. It is a "how-to" technical guide of interest 
to people responsible for satellite image processing. 
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Upper Midwest Gap Analysis Program 

Image Processing Protocol 

by 

Thomas Lillesand, Jonathan Chipman, David Nagel, 
Heather Reese, Matthew Bobo, and Robert Goldmann 

Abstract 

This document presents a series of technical guidelines by which land cover information is being extracted from 
Landsat Thematic Mapper data as part of the Upper Midwest Gap Analysis Program (UMGAP). The UMGAP 
represents a regionally coordinated implementation of the national Gap Analysis Program in the states of 
Michigan, Minnesota, and Wisconsin; the program is led by the U.S. Geological Survey, Environmental 
Management Technical Center. 

The protocol describes both the underlying philosophy and the operational details of the land cover classification 
activities being performed as part of UMGAP. Topics discussed include the hierarchical classification scheme, 
ground reference data acquisition, image stratification, and classification techniques. This discussion is primarily 
aimed at the image processing analysts involved in the UMGAP land cover mapping activities as well as others 
involved in similar projects. It is a "how-to" technical guide for a relatively narrow audience, namely those 
individuals responsible for the image processing aspects of UMGAP. 

1. Introduction 

Studies at the University of Wisconsin-Madison Environmental Remote Sensing Center and the 
Wisconsin Department of Natural Resources have led to the development of a proposed methodology for 
large-area land cover classification using satellite imagery. This protocol is intended to guide image 
processing analysts working on the combined statewide land cover mapping efforts of the Wisconsin 
Initiative for Statewide Cooperation on Landscape Analysis and Data (WISCLAND) and the Wisconsin 
portion of the Upper Midwest Gap Analysis Program (UMGAP). The Upper Midwest Gap Analysis Program 
represents a regionally coordinated implementation of the national Gap Analysis Program (GAP) in the states 
of Michigan, Minnesota, and Wisconsin, led by the U.S. Geological Survey (USGS), Environmental 
Management Technical Center. The image processing procedures developed for WISCLAND, developed 
specifically for Wisconsin, form the general basis for the UMGAP image processing activities being applied 
simultaneously in Michigan and Minnesota. The latter two states, however, are making appropriate 
modifications to the protocol to reflect local programmatic interests and preexisting geographic information 
systems data sources. 

The protocol describes the underlying philosophy and operational details of the land cover classification 
activities being performed as part of UMGAP. The hierarchical classification scheme is described first, 
followed by the ground reference data collection process. A stratified sampling scheme is used to acquire 
ground reference data for training purposes. Prior to classification, Landsat Thematic Mapper (TM) satellite 
images are stratified according to several factors, and individual strata are classified separately. The primary 
classification method used here is "guided clustering," a hybrid technique combining elements of both 
supervised and unsupervised classification methods. The overall genesis of these classification guidelines 
can be found in Lillesand (1994). 

This discussion is aimed at a relatively narrow audience, that is the image analysts responsible for actually 
performing the image classification involved in the above land cover mapping programs as well as others 
involved in similar projects. Accordingly, this document focuses on the "how-to" technical steps necessary 



to effect the image processing (and related geographic information systems analyses) being employed in 
UMGAP; for this reason, portions of this document include references to specific ERDAS Imagine and 
ARC/INFO commands and processes.1 Also, the methods described herein are the result of ongoing studies, 
and many of these procedures are evolving as they are exercised in a production environment. 

2. Selection of an Extendable Coding Scheme 

One of the most important and difficult steps in planning a land cover classification project is selection 
of the categories to be discriminated in the mapping effort. The classification scheme should be compatible 
with existing national systems and yet represent local land cover characteristics. Selecting the appropriate 
level of categorical detail is also important. Choosing an overabundance of categories can lead to 
considerable confusion among cover types, whereas selecting too few classes may not meet user needs. 

With these considerations in mind, a considerable effort was made to develop a classification scheme that 
was (1) compatible with existing national schemes, (2) reflective of Upper Midwest cover types, (3) realistic 
in terms of the TM sensor capabilities, considering that some ancillary data would also be used to aid the 
classification process, and (4) extendable under ideal classification conditions or with an improvement in 
technology. To accomplish this task, a classification scheme committee of WISCLAND participants was 
formed representing the Wisconsin Department of Natural Resources, the Environmental Remote Sensing 
Center, the U.S. Forest Service, and the USGS. 

Numerous existing classification schemes were studied to help guide the structure and categorical detail 
of the UMGAP scheme. Some of these include "A Land Use and Land Cover Classification System for Use 
With Remote Sensor Data" (Anderson et al. 1976), "A Modified Wetland/Upland Land Cover Classification 
System for Use With Remote Sensor Data" (Klemas et al. 1992), "A Coastal Land Cover Classification 
System for the NOAA Coastwatch Change Analysis Project" (Klemas et al. 1993), and "Midwest Regional 
Community Classification" (Faber-Langendoen 1993). 

To develop a classification scheme representative of Upper Midwest cover types and reflective of TM 
sensor capabilities, a collection of works comprising published research and graduate theses was examined. 
Results from 12 studies, consisting of 31 separate classifications conducted in the Great Lakes region, were 
compiled into a single document. Accuracy figures for each land cover class in conjunction with category 
specificity were noted for each study. From these observations, a group of base categories was identified for 
inclusion in the UMGAP classification scheme, and additional extended categories were noted for possible 
use under ideal classification conditions, with improved technology, or through the inclusion of other data 
sources. These base and extended categories are listed in Appendix A, and definitions are included in 
Appendix B. 

The national GAP standards (Jennings 1994) involve classification to the alliance level and consistency 
with the United Nations Educational, Scientific, and Cultural Organization/The Nature Conservancy system 
(United Nations Educational, Scientific, and Cultural Organization 1973), with certain limitations. Many of 
the UMGAP categories listed in Appendix A can be matched directly to individual alliances. Some 
categories, however, represent components of multiple alliances. For example, the classification system in 
Appendix A lists separate categories for beech, sugar maple, red maple, and three oak species; these 
represent several alliances including "beech-sugar maple" and "beech-oak-maple." At the 30- x 30-m 

'References to these commands and processes arc provided to clarify certain aspects of the protocol, and mention of particular software 
packages is not intended to express or imply the endorsement of same. 



(0.09 ha) spatial resolution required by many end users of the UMGAP land cover data, the individual 
categories listed in Appendix A will be used. During the aggregation from the 0.09 ha initial classification 
to the final 100-ha GAP minimum mapping unit, the categories will be modified to reflect the standard GAP 
classes (see Section 6, Post-Classification Processing). 

2.1 The Upper Midwest Gap Analysis Program Classification System 

The classification system is hierarchical in character (i.e., more detailed classes can be collapsed into 
more general ones). For example, the extended class of "Orchard" can be generalized up one level to 
"Woody" or two levels to "Agriculture." The classification system is designed with an eye towards 
"crosswalking" it to other systems where possible. Whereas the system fully exploits the potential of 
automated image classification, it also recognizes its limitations. It is envisioned that the system can and will 
be extended through the use of additional land cover categories and other information sources. It provides 
a point of departure for such applications as GAP analysis. The need for potential extension, however, was 
recognized from the outset. 

3. Ground Reference Data 

Ground reference or groundtruth data must be collected to train the computer to recognize the various land 
cover categories latent in the TM imagery and to assess the categorical accuracy of the resulting 
classification. Ground reference data generally cannot be collected for large portions of the entire project 
area; therefore, representative samples are frequently used (Lillesand and Kiefer 1994). Several criteria must 
be considered when evaluating the suitability of any ground reference data set for land cover classification. 
First, the data collection method should be systematic, that is, representative of the entire area to be 
classified. Second, the method must have an element of randomness to avoid selection bias (Ott 1988). Third, 
a sufficient number of reference samples must be utilized to provide an appropriate sample density and 
ensure that the classification accuracy is known within a specified confidence level (Thomas and Allcock 
1984). Fourth, the reference data must be reasonably contemporary with respect to the acquisition date of 
the imagery. Fifth, the level of accuracy of the reference data must be high. Last, the classification scheme 
used for collection of ground reference data must be compatible with the intended image processing 
classification system. 

The UMGAP project includes both the collection of new ground reference data and the incorporation of 
preexisting reference data sets. For some areas of the region, particularly public lands, adequate ground 
reference data sets already exist that may meet the requirements for use in training and accuracy assessment. 
Also, for agricultural areas, previously collected data from the same year as the satellite imagery will be used. 
For other areas, new reference data will be collected in the field. The collection of new data in the field is 
described in Section 3.2, Nonagricultural Sample Site Selection and Training. The use of preexisting data 
is described in Section 3.3, Agricultural Sample Site Selection and Training. 

To meet the six criteria outlined above, studies were conducted at the Wisconsin Department of Natural 
Resources and the Environmental Remote Sensing Center to examine methods for collecting and 
incorporating ground reference data. These studies were aimed at developing a sampling methodology 
whereby training and accuracy assessment data are collected simultaneously. Among the advantages of this 
strategy are the following: (1) redundant field work and data handling are minimized, (2) no changes occur 
on the ground between acquisition of training data and accuracy assessment data, and (3) discrepancies in 
the application of the classification system are avoided. 



3.1 Sampling 

3.1.1 Choosing Appropriate Ground Coverage 

The first step in developing a sampling scheme was to determine the amount of ground area that should 
be sampled to include an adequate number of polygons for each land cover category. A statewide, completely 
randomized sampling scheme would require field staff to cover more ground than necessary to accurately 
represent all land cover categories. Because aerial photography is readily available for the region, and State 
Department of Natural Resources and other field staff cooperators are skilled in using this medium for 
navigation and interpretation, it was decided that aerial photos would serve as a base for delineating polygons 
for ground verification. The extent of individual photos would serve as a logical unit for sampling, thus 
restricting the ground area covered by field staff. 

However, the data collection methods described here involve tradeoffs. These methods should produce 
a set of reference data representative of the full range of spectral variability present in each satellite image, 
thus providing ample training data for classification. On the other hand, the nonrandom aspects of the 
sampling scheme affect the use of these data for certain accuracy assessment purposes. This is discussed in 
Section 7.2, Thematic Accuracy Considerations. 

Two large-area studies in the Great Lakes region by Luman (1992) and Bauer et al. (1994) were examined 
to help determine the number of photos that should be sampled to adequately represent all cover types. In 
addition, a pilot project examined previously classified TM scenes centered on various locations throughout 
Wisconsin. These data were processed by graduate students for various research projects conducted at the 
Environmental Remote Sensing Center. FourTM classifications capturing agricultural and forested regions 
of the state were subset in 2,048 x 2,048 pixel arrays and overlaid with a grid representative of l :20,000 scale 
photo boundaries. Each photo covered about 4.5 km on a side. The 2,048 x 2,048 pixel array represented 
approximately 3,775 km2, the size of a typical county in Wisconsin. The 1:20,000 scale photography was 
chosen because it was widely available and could be used as a surrogate for another readily available photo 
source, 1:40,000 scale National Aerial Photography Program (NAPP) frames. 

Examination of the photography grid overlaid on the classified imagery suggested that a sample of about 
6% of the photographs would capture enough variability in the scene to represent all but the least frequently 
present classes. To account for these rare categories, a sample of approximately 50% of the photography 
frames would be needed, which would involve a cost disproportionate to the importance of the infrequent 
categories. Other methods will be required to improve the representation ofthc.se infrequent categories. 

Because current 1:40,000 scale NAPP photography is available to all three states involved in the UMGAP 
initiative, this product was used rather than the 1:20,000 scale photography. The 6% coverage deemed 
necessary could easily be transferred to the NAPP frames because a 1:20,000 scale photo covers one quarter 
of the area of a NAPP photo. The NAPP also has an advantage in that frames are centered on each of the four 
quarters of the 1:24,000 scale (7.5 min) USGS quadrangle maps ("quarter quads," Figure 1). This allows easy 
georeferencing of the photo frames in a geographic information system (GIS). In addition, because the NAPP 
photos cover four times the area of the 1:20,000 scale photos, more opportunities are offered to sample 
infrequently occurring categories. 

Using NAPP photography, the fundamental sampling unit consists of one quarter of a photo, also referred 
to here as a USGS quarter quarter quadrangle (QQQ). Implementation of the sampling scheme is described 
below. 
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Figure 1. Geographically stratified sampling scheme. 

3.1.2 Quarter Quarter Quadrangle Sampling Scheme 

Completely randomized designs provide the ideal statistical basis for accuracy assessment but can prove 
impractical to implement (Congalton 1991), whereas a systematic approach is easier to implement but might 
not be acceptable for accuracy assessment (Congalton 1988). Thus, Congalton (1991) suggests that a 
combination of the random and systematic approaches be used for selecting samples. For the UM GAP 
project, a stratified scheme with random eastings and northings was chosen for selecting QQQs in which to 
delineate ground reference samples. The design allows for an essentially even distribution of sampling units 
throughout the state. A random north-south and east-west position is applied to each row and column of quad 



sheets to minimize the effect of periodicity in the landscape. Berry and Baker (1968) suggest that this type 
of scheme is preferred for most land cover investigations, especially when underlying serial correlations 
(spatial autocorrelation) are unknown. 

The sampling scheme is implemented as follows. Each USGS quad in the state, representing a primary 
cell or sampling stratum, is divided into four columns and four rows resulting in 16 secondary cells, each 
representing a QQQ. At random, a number (1-4) is assigned to each column and each row of primary cells. 
The random column assignment represents the north-south position for the secondary cell to be selected and 
the row assignment represents the east-west secondary cell position. A QQQ then is selected for each 
quadrangle based on the north-south and east-west random numbers generated (Figure 2). 

For example, the northwest primary cell in Figure 2 has a north-south random number of 1 and an east- 
west assignment of 2. These random selections place the QQQ for sampling in the first row and second 
column of the quadrangle. 

The NAPP photos corresponding with the selected quarter quad are then acquired. Finally, the appropriate 
quarter of the NAPP photo, corresponding to the randomly selected QQQ, is delineated as the area within 
which ground reference polygons will be defined. 
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Figure 2. Geographically stratified sampling scheme with random eastings and northings, shown for 
16 U.S. Geological Survey 7.5-min quadrangles. 



3.2 Nonagricultural Sample Site Selection and Training 

The NAPP photos selected using the above procedure are used by image analysts as a base for delineating 
ground reference data. It was determined that 9- x 9-inch contact prints at 1:40,000 scale would be adequate 
for this purpose. This format can be conveniently handled in the field and easily transported via mail. 

In order to minimize staff time in the field and ensure that useful ground samples are collected, it was 
decided that sample sites should be chosen by image interpreters in the office, aided by viewing color 
composites of the TM data to be classified. First, a sheet of mylar is attached over each photo and the 
appropriate quarter of the NAPP photo is delineated. Next, image interpreters delineate candidate polygons 
on the mylar within the appropriate quarter using pencil. If sufficient auxiliary information is available to 
make an identification, the image analyst may pre-identify polygons to expedite the field-checking process. 

Several criteria should be used when delineating polygons on photos. First, the polygons should be at least 
2 ha. Second, the corresponding area on the TM imagery should be relatively homogenous in tone. Third, 
with few exceptions, the polygons should be delineated along roads. Fourth, the selected samples should be 
representative of the range of spectral variability present in the area, based on visual examination of the TM 
images. Following these guidelines will help ensure that each sample consists of only one cover type, that 
all cover types are sampled, and that staff can easily access the sites in the field (Figure 1). 

As described above, it is important that the composition of the polygon set is representative of the 
variability in the stratum being used. Polygons may be delineated outside of the selected quarter photo when 
necessary to represent important spectral features not present in the selected quarter photo or when it is 
difficult to acquire a sufficient number of polyons in the selected quarter. It is also important to note that 
strata predominantly composed of agricultural cover will require fewer nonagricultural samples relative to 
the number of agricultural polygons. 

Next, each polygon is assigned a unique number. The sample polygons are then delineated on the satellite 
imagery using screen digitizing to be used for future processing. The photos with mylar attached are 
delivered to field staff who field verify and record the UMGAP category associated with each ground sample 
polygon. Forms and definitions to be used by field staff are included in Appendix B. 

Summary: Methods: 

1. Select the appropriate NAPP photo and position 1. Done manually, 
mylar overlay sheet. 

2. Display the TM imagery for the corresponding area. 2. Display scenes in Viewer. 
Two images, three bands each, might be displayed 
side-by-side. 

3. Select, number, and identify (if possible) at least 3. Done manually. 
30 polygons, primarily within the selected quarter 
photo. Include polygons from other quarters of the 
photos as necessary. Polygons should be at 
least 2 ha and reasonably homogeneous in 
appearance in the raw TM data. 

4. Delineate the selected polygons on the TM data, 4. Create vector coverage, 
using screen digitizing. 

5. Deliver   photos   with   mylar   overlays   to   field 5. Done manually, 
personnel. 



3.3 Agricultural Sample Site Selection and Training 

The crop grown in any given field in the Upper Midwest may change annually (or even intra-annually) 
because of crop rotation. As a result, the collection date of agricultural ground reference data must match 
the TM acquisition date as closely as possible. To meet this requirement, photo bases and crop reports will 
be acquired from county Farm Service Agency (FSA) offices. These data are collected annually by FSA as 
part of that agency's 35-mm-based crop compliance program. Because these data are typically organized 
according to tracts of ownership, it is usually necessary to consult a plat map for each of the sections to be 
sampled to assist FSA in the information compilation process. That is, a list of owners by section usually 
must be compiled prior to making the information request to FSA. 

Results of a pilot study at the Wisconsin Department of Natural Resources and the Environmental Remote 
Sensing Center showed that acquiring crop data for one public land survey section (nominally 1 mile x 
1 mile) per QQQ is sufficient to provide agricultural training data for the agricultural base categories listed 
in Appendix A. The section chosen within the QQQ is deliberately selected by the image interpreter, based 
on the number of fields and diversity of crops within the section. It should be noted that more sections may 
be required in predominantly agricultural areas. 

The boundary of each field is delineated on the imagery using screen digitizing. Some fields may be split 
into sub-samples to facilitate training and accuracy assessment. 

3.4 Identification of Radiometrie Normalization Reference Sites 

One of the objectives of UMGAP is to provide useful data for land cover change-detection studies. There 
are a variety of different techniques used for change detection (Khorram et al. 1994; Lillesand and Kiefer 
1994). Because some of these techniques require the radiometric standardization of multiple dates of 
imagery, it is important to be able to identify specific sites on the landscape that experience minimal spectral 
change over the anticipated period of change detection. These sites arc used to radiomctrically normalize one 
image to the other, in a process referred to as relative calibration. This approach was demonstrated by Coppin 
and Bauer (1994) in a multitemporal change-detection study in Minnesota and was recommended by the 
Coastal Change Assessment Program change-detection protocol (Khorram et al. 1994; Dobson et al. 1995). 

Eckhardt et al. (1990) identified several important considerations for the selection of spectrally invariant 
sites used for radiometric normalization of multi-date images, including 

• The sites must be of approximately the same elevation as the area of interest in the scene. 
• The sites should contain little or no vegetation. 
• The sites must be in a relatively flat area. 
• When viewed on a display screen, the sites must have no apparent change in pattern over time. 
• As far as possible, the sites should represent a wide range of pixel brightnesses. 

During the UMGAP data collection and data processing stages, analysts should attempt to identify 
potential radiometric normalization sites. To the extent possible, from 10 to 20 well-distributed, 
radiometrically invariant sites should be identified in each scene. Ground targets will include such features 
as deep, nonturbid water bodies, roads, parking lots, rooftops, and other sites. 



4. Satellite Image Data 

Image data used for land cover classification can come from a variety of sensors, can be single date or 
multitemporal, and can be nearly raw or highly manipulated. This project is using two-date Landsat TM 
scenes, provided by the national GAP program (Jennings 1994). The multiple images that cover the project 
area need to be modified in several ways, including matching coordinate systems and eliminating areas of 
overlap between adjacent scenes. 

4.11mage Band Selection 

The image band selection process was driven by two main criteria: the need for a high level of accuracy, 
and the need for efficient use of available computer resources. After a number of different tests, it was 
determined that the best results were obtainable using two-date TM imagery from all six reflectance 
(nonthermal) bands, compressed to three bands for each date by a principal components transformation. The 
TM imagery is well suited to this type of land cover classification because of its 30-m resolution and variety 
of spectral bands, especially in the near- and mid-infrared. The precise dates of imagery to be used vary from 
area to area as a result of both data availability and temporal variation in vegetation condition across the large 
area included in the study. In general, one TM image from summer and one from fall were selected to derive 
the most benefit from seasonal changes in forested areas. Spring and summer images were selected in areas 
dominated by agricultural cover types. 

Because of the very large area involved, the processing and analysis of the 12 bands of data of the 
combined dates were considered to be a significant problem. Furthermore, it was anticipated that there would 
be a great deal of redundancy of information among the TM bands on each date because of interband 
correlation (Lillesand and Kiefer 1994). A number of studies have shown that principal components analysis 
(PCA) can be used to reduce the number of bands used in image analysis without significant loss of 
information (Jensen 1986). For this project, several different methods of generating the components were 
tried. The best results were achieved by creating separately the first three components from each date, then 
combining the two sets of components into a single six-band image for classification. Preliminary results 
showed that this combined principal components method produced as accurate classifications as did a larger 
number of raw image bands and involved significantly less time, effort, and disk space. To get the most 
benefit from the PCA process, any clouds present in the imagery are masked out prior to generating the 
principal component bands. Additionally, the principal components are generated separately for each stratum, 
rather than for the entire scene. These steps are described in more detail in Section 5.2, Scene Stratification. 

4.2 Removal of Overlap for Adjacent Thematic Mapper Scenes 

The numerous TM scenes that compose any state in the Upper Midwest overlap by approximately 35% 
on each side (and much less in the north-south direction). To reduce processing time, most of this overlap 
should be eliminated. Deciding which areas of overlap to eliminate is not trivial, especially in light of the 
need to further subdivide the states into spectrally consistent classification units (SCCUs), described in 
Section 5.2. 

In the overlap area between two neighboring TM scenes, the image analyst must determine which portion 
of each image will be used for classification and which will be ignored. The two scenes can then be classified 
separately without processing the overlapping area twice. One consideration in eliminating overlap is the 



presence of stratification unit boundaries (described in Section 5.2). Cloud cover, haze, and general image 
quality will also affect the decision of which portions of the overlapping areas to assign to a scene. 

Screen digitizing is used to select the areas to be classified. A small amount of overlap (approximately 
100 pixels) should remain between scenes. This area of overlap is used to compare the compatibility of the 
two classifications when completed and ensure that no gaps exist between images after they are stitched 
together. 

5. The Classification Process 

The UMGAP image processing methodology is the end-product of extensive research and development. 
It consists of two major procedures: stratification of the image data into several types of discrete units and 
classification of the pixels in each unit. These procedures are designed to maximize the accuracy and 
completeness of the resulting output maps. The entire process is described in proper order in a 14-step 
summary in Section 5.1. 

Automated classification is the process of systematically extracting useful land cover information from 
raw remotely sensed imagery. The most well-developed methods of classification are based on analysis of 
spectral patterns among a set of image bands. A number of different classification algorithms have been 
employed; most such methods can be categorized as supervised, unsupcrvised, or hybrids of the two 
(Lillesand and Kiefer 1994). To determine the best automated classification methodology for this project, 
a series of tests was conducted and a set of protocols for the classification process was developed based on 
the results. 

As described in Section 5.2, the satellite imagery are stratified in several ways. Where clouds arc present, 
they are masked out. Next, urban areas are classified separately. Each scene is then broken up into a number 
of SCCUs, based in part on ecoregions but modified as necessary by photomorphic features of the imagery. 
Within each of these strata, wetlands are cut out (using existing digital wetlands boundary maps) and 
processed separately. The bulk of each stratum (the portion outside of all clouds, urban areas, and 
wetlands) is classified using a hybrid method referred to as guided clustering, followed by maximum 
likelihood classification. Wetlands are classified separately using traditional unsupcrvised clustering or 
guided clustering followed by maximum likelihood classification. 

5.1 The Upper Midwest Gap Analysis Program Classification Process: 
A 14-Step Summary 

The classification process consists of a series of 14 steps. These steps are described in more detail in 
Sections 5.2 through 5.6. To summarize the entire process, the 14 steps are listed here and are shown 
conceptually in Figure 3. 

1. Delineate all cloud-covered areas in the scene and remove them from both image dates. 

2. Delineate all urban areas and copy them from the parent images to separate files. 

3. Compute principal components for urban areas separately for each date and combine the first three 
principal components from each date into a single urban principal component file. 
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Figure 3. The Upper Midwest Gap Analysis Program classification process in 14 steps. 

4. Use unsupervised clustering of the principal component bands to classify all urban areas into categories 
of "High intensity urban," "Low intensity urban," and "Other." Retain the "High intensity urban" and 
"Low intensity urban" pixels for subsequent replacement into the final classification and mask them out 
from the TM scenes. Do not retain "Other" pixels, which will be reclassified in the original image data 
set. 

5. Delineate SCCUs in the original nonurban image data set based on photomorphic interpretation of the 
ecoregion map. 
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6. Within each SCCU, compute principal components for each image date separately for all remaining 
pixels in the parent data set (original - [clouds + "High intensity urban" + "Low intensity urban"]). 
Combine the first three principal components for each date into a single nonurban image data set. 

7. Delineate all wetlands in each SCCU and remove them from the image. 

8. Classify wetland areas in each SCCU using unsupervised clustering (or guided clustering) followed by 
maximum likelihood classification. 

9. For any cloud-covered wetland areas, apply the original principal component transform to the cloud-free 
date and classify. 

10. Classify nonurban upland areas in each SCCU using guided clustering followed by maximum likelihood 
classification. 

11. For any cloud-covered nonurban uplands, apply the original principal component transform to the cloud- 
free date and classify using unsupervised clustering. 

12. For any cloud-covered urban areas, apply the original principal component transform to the cloud-free 
date and classify. 

13. Insert the "High intensity urban," "Low intensity urban," wetlands, and all single-date cloud-free 
classified areas into the nonurban upland classified data set. 

14. Use ancillary data to classify all areas cloud covered in both image dates. 

5.2 Scene Stratification 

Classification projects in the past have realized improved accuracy as a result of scene stratification 
(Stewart 1994). This involves segmenting a large study area into smaller (more spectrally consistent) regions 
prior to classification. Several stratification methods were investigated for this project, including masking 
of urban areas, stratification by ecoregion, and subdivision of ecoregions using wetland/upland boundaries. 

5.2.1 Clouds 

If clouds are present in either date of imagery, screen digitizing is used to delineate them. The analyst 
visually identifies clouds in the imagery and also identifies cloud shadows based on their proximity to clouds. 
The clouds and cloud shadows are then masked out. During the classification process, these areas are 
classified based only on the data from the cloud-free date. Areas with clouds on both dates should be few 
in number and will either be classified using ancillary data only or left unclassified. 

5.2.2 Urban Areas 

Urban areas are often difficult to classify because they are a mixture of many cover types (Kramber and 
Morse 1994). Highly reflective urban cover is often confused with bare soil, resulting in errors of omission 
and commission with agriculture. Many authors have found that this problem can be overcome by classifying 
urban areas separately from nonurban areas (Robinson and Nagel 1990; Northcut 1991; Luman 1992). 
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Urban areas are copied to a separate file for classification. The TIGER Line Files from the 1990 Census 
are overlaid on an image backdrop as a guide and the analyst delineates boundaries around urban areas. The 
analyst may also refer to NAPP photos to assist in identifying urban areas. The urban areas are classified as 
high intensity urban, low intensity urban, or nonurban. After classification, those portions of the delineated 
urban areas classified as high intensity urban or low intensity urban are masked out of the TM images, 
whereas those portions of the delineated urban areas classified as nonurban are not masked out. Thus, any 
pixels within the delineated urban areas that have nonurban land cover will be classified with the remainder 
of the scene. 

5.2.3 Spectrally Consistent Classification Units 

Each scene is divided into several photomorphic SCCUs (Figure 4). These strata are based on ecoregion 
boundaries but are modified as necessary to delineate areas of relatively uniform appearance (including 
phenological regions and atmospheric influences) present in the image and not accounted for (or adequately 
represented) in the ecoregions. A variety of maps of ecoregions and landscape units have been proposed for 
stratification of remotely sensed data prior to classification (Stewart 1994); the SCCUs for UMGAP are 
based on the regional landscape ecosystems described by Albert (1995). After delineating SCCUs, the analyst 
should buffer each region by approximately 500 m, extending each into adjacent SCCUs, to assist in post- 
classification edge matching. At state borders, a buffer region extending approximately 3,000 m beyond the 
boundary should be included. As described in Section 4.1, principal components for each SCCU are 
generated separately for each date of imagery. The first three principal component bands from each date are 
then combined, making a single six-band image for each SCCU. 

5.2.4 Wetlands 

Numerous researchers have classified wetlands in the Upper Midwest with varied success (e.g., Best 
1988; Cosentino 1992; Polzer 1992). Wetland classification accuracy is sometimes unacceptably low because 
wetland vegetation often appears spectrally similar to upland cover types. Because of this problem, it has 
been suggested that "current satellite technology is most valuable when used in conjunction with digital data 
derived from aerial photography and other sources" (Federal Geographic Data Committee 1992). For this 
reason, wetland surveys based on aerial photography, such as the National Wetlands Inventory, are being 
used to extract wetlands from each stratum of the satellite imagery after principal components are generated. 
Uplands and wetlands can then be processed separately. Only the most-generalized level of the wetlands 
inventory (wetlands versus uplands) is used to avoid tying the UMGAP classification to the potentially 
obsolete details of the photo-based inventory. 

This procedure limits the confusion between upland and wetland types to those instances where errors 
of omission or commission exist in the wetlands inventory data. At the same time, using the satellite data for 
classification within wetland boundaries ensures that the classification of these areas is as current as possible 
and provides a uniform interpretation scale for both wetlands and uplands. For those who prefer the 
sometimes dated (but more detailed) National Wetlands Inventory data, these data can be "burned into" the 
TM classification at a later time. 
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Figure 4. Preclassification image stratification. 

Summary: 

1. Use screen digitizing to delineate any clouds that 
appear on either date's image. Mask out these 
clouds. 

2. Overlay TIGER Line files on the TM imagery and 
perform screen digitizing to delineate urban areas. 
Extract (copy) the urban areas from each date of 

Methods: 

1.    Use "Mask" model (in-house) in Spatial Modeler. 

2. Use AOI and Subset. For each date's image: 
Run Principal Components, in 16-bit mode, with 
the first three components for output. Run PCA 

14 



TM imagery, but do NOT mask them out. In the 
urban files, compute principal components 
separately for each date and combine the first 
three principal components from each date into a 
single file. 

3. Classify the extracted urban area principal 
component bands into high intensity urban, low 
intensity urban, and nonurban classes. In the TM 
scene for each date, mask out pixels classified as 
high intensity urban or low intensity urban in the 
urban file. Do NOT mask out pixels within the 
delineated urban areas that were classified as 
nonurban. 

3. 

Stats Model (Imagine). Run C program (in- 
house) to format principal component statistics. 
Run principal component 16-to-8 bit adjustment 
model (in-house). Use Layer Stack to combine 
principal component files into a six-band file. 

See Section 5.3, Unsupervised Clustering of 
Urban Areas. 

Overlay Albert's ecoregion boundaries on top 
of the image. Delineate SCCU boundaries, 
which reflect photomorphic features (including 
phenological regions and atmospheric influences) 
present in the image and are not accounted for, or 
accurately represented in, the ecoregions. A 500-m 
buffer should be left around the edge of each 
SCCU. Cut each date's image along the SCCU 
boundaries. 

4. In Arc/Info, intersect ecoregions with outline of 
image to produce polygons. Build the new 
coverage. In Imagine, display image and overlay 
vectors. Use the Vector Query Tool to select 
polygons for AOI. Add selected polygons to AOI 
and save to file. Warp/Reshape AOIs to match 
photomorphic features. Use Subset with AOIs. 

For each SCCU, generate principal component 
bands from the first date of imagery and from the 
second date of imagery. Combine the first three 
principal component bands from both images into 
a single file. 

For each SCCU: Run Principal Components, in 
16-bit mode, with the first three components for 
output. Run PCA Stats Model (Imagine), 
principal component stats formatting program 
(in-house), and principal component 16-to-8 bit 
adjustment model (in-house). Use Layer Stack 
to combine principal component files into a 
six-band file. 

Import digitized wetland boundaries from photo- 
based inventory. Register the digitized wetland file 
to the TM imagery. Within each SCCU, overlay 
wetland polygons and extract wetland pixels. 
Set aside the wetlands portion for separate 
classification. Mask out the wetlands from the 
remaining (upland) portion of the SCCU. 

In Imagine, display image and overlay vector 
wetlands file. Use Vector Query Tool to select 
polygons for AOI. Add selected polygons to AOI 
and save to file. Use Subset with AOIs. Use 
mask model (in-house) in Spatial Modeler to 
place Os (zeros) in upland file. 

5.3 Unsupervised Clustering of Urban Areas 

When all of the urban areas have been delineated with screen digitizing, copy them from the TM 
imagery. Principal component bands are generated as described in Section 5.2. An unsupervised 
classification is performed on the extracted urban file, and the two urban classes, high intensity urban and 
low intensity urban, are differentiated. These pixels are masked out of the TM scene to be burned back in 
during the post-classification phase (see Section 6). All other pixels in the delineated urban areas are 
designated nonurban and are not masked out of the TM scene. 

Because the urban areas were extracted prior to the creation of the SCCUs, all the urban areas in a scene 
are classified together. 
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Summary: 

1. Using an unsupervised ISODATA routine, cluster 
the extracted urban areas. 

2. If desired, perform maximum likelihood 
classification of the urban areas with the clusters 
from ISODATA. 

3. Recode subclasses as either high intensity urban, 
low intensity urban, or nonurban. 

4. Use the high intensity urban and low intensity 
urban pixels as a mask for the rest of the TM 
scene, as described in Section 5.2. 

Methods: 

1. Using the AOIs from Section 5.2, run ISODATA 
with AOI option. 

2. Run maximum likelihood classifier. 

3.    Use Recode. 

4.    See Section 5.2. 

5.4 Unsupervised Clustering of Wetlands 

Wetland areas are cut from each SCCU during the stratification stage, after performing the principal 
components transformation described in Section 5.2 on each SCCU. The resulting wetlands-only portion of 
the TM image are clustered using an unsupervised ISODATA routine. Spectral clusters are labeled based 
on the wetlands inventory and other data sets as necessary. After classification of the remainder of the TM 
scene, the condensed wetland information classes are inserted into the final upland classification file. Note 
that extracting wetlands from the imagery should leave "holes" of zero value pixels in the TM data. This 
procedure should speed machine processing and mitigate confusion for image analysts concentrating on the 
upland data. 

In some instances, when adequate training data are available, guided clustering may be used for wetlands 
classification rather than unsupervised clustering. The guided clustering methodology is described in 
Section 5.5. 

Summary: 

1. Using an unsupervised ISODATA routine, cluster 
the wetlands-only portion of the TM image. 

2. Perform maximum likelihood classification of the 
wetlands areas with selected clusters from 
ISODATA. 

Methods: 

1. Using the AOIs from Section 5.2, run ISODATA 
with AOI option. 

2. Run maximum likelihood classifier. 

3.    Label   spectral   clusters   based   on   Wisconsin 
Wetlands Inventory or other data. 

3.    Recode classes. 

5.5 Guided Clustering 

Prior land cover classification projects have employed both supervised and unsupervised classification 
methods (Jensen 1986). Both methods, however, have inherent difficulties that make the classification 
process more costly and less reliable. Bauer et al. (1994) found that supervised techniques were inadequate 
for large-area classifications in the Upper Midwest region because of forest complexity, poor spectral 
separability, and the extensive manual processing required. In an attempt to resolve these problems with 
traditional supervised classification methods, a number of new techniques have been suggested. 
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Unsupervised techniques have the advantage of eliminating the costly and intensive training set 
delineation process of supervised classification, but identifying the resulting clusters can be difficult. 
Variability in different analysts' interpretation of the output of unsupervised classifiers may threaten the 
accuracy and objectivity of these classifications (McGwire 1992). Also, unsupervised classifiers reduce the 
ability of the analyst to control which classes are defined. 

Guided clustering, the approach taken here, represents an alternative to supervised and unsupervised 
classification techniques (Lime and Bauer 1993; Bauer et al. 1994). It avoids most of the major pitfalls of 
the previous methods and appears well suited to large-area classifications with complex cover types. In 
guided clustering, the analyst delineates training sets for each cover type. Unlike the training sets used in 
traditional supervised clustering methods, these training sets need not be perfectly homogenous. For each 
information class, an unsupervised clustering routine is used to generate 20 or more spectral signatures from 
the class' training sets. These signatures are examined by the analyst; some may be discarded or merged and 
the remainder are considered to represent spectral subclasses of the desired information class. Signatures are 
also compared among the different information classes. Once a sufficient number of such spectral subclasses 
have been acquired for all information classes, a maximum likelihood classification is performed with the 
full set of refined spectral subclasses. The subclasses are then aggregated back into the original information 
classes. 

Summary: 

1.    The    analyst   delineates   training   pixels   for 
information class X. 

Methods: 

1. Use Vector Query Tool with Arc coverage. Use 
query to select polygons based on SCCU ID, 
class, and assessment or training status. 
Convert to AOL 

2. Cluster class X pixels into spectral subclasses 
X1..Xn using an automated clustering algorithm. 

3. Examine class X signatures and merge or delete 
signatures as appropriate. A progression of 
clustering scenarios (e.g., from 3 to 20) should be 
investigated, with the final number of clusters and 
merger and deletion decisions based on such 
factors as (1) display of a given class on the raw 
image, (2) multidimensional histogram analysis for 
each cluster, and (3) multivariate distance 
measures (e.g., transformed divergence or 
Jeffries-Matusita distance). 

4. Repeat steps 1-3 for all additional information 
classes. 

5. Examine ALL class signatures and merge or delete 
signatures as appropriate. 

6. Perform maximum likelihood classification on the 
entire SCCU with the full set of spectral 
subclasses, saving the Probability Density 
Function image. 

7. Aggregate spectral subclasses back to the original 
information classes. 

ISODATA. 

Evaluate signatures in Signature Editor and 
modify as desired. 

4. Repeat steps 1-3. Use Append option in 
Signature Editor to unite all spectral signatures 
for all classes in a single file. 

5. Evaluate signatures in Signature Editor and 
modify as desired. 

6. Run maximum likelihood classifier. 

7.    Use Recode. 
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To ensure that all of the spectral classes present in a SCCU are represented, the analyst may perform an 
unsupervised clustering of the entire SCCU as a test. The resulting cluster signatures are compared to the full 
set of spectral signatures from guided clustering to help determine whether any significant spectral classes 
have been omitted. If the unsupervised clustering produces any clusters that are not well represented by any 
of the signatures developed through guided clustering, additional training samples may be required. 

If any clouds were present in a particular SCCU, the clouded areas masked out in Section 5.2 will have 
to be classified in a separate step after the rest of the SCCU is classified. The same set of signatures created 
during the guided clustering of the noncloudy portion of the SCCU will still be used for the cloud covered 
areas. However, the signature files must be edited to remove the three principal component bands for the 
cloudy image. The maximum likelihood classification will then be done using only the bands from the cloud- 
free image. 

5.6 Maximum Likelihood Classification 

Statistical classifiers in image processing have proven successful in many land cover classification 
projects. In general, these classifiers assign an image pixel to its most likely class, based upon the class mean, 
variance, and covariance in each band. This process may involve calculating a number of different 
probability values representing the likelihood that a given pixel belongs to each of the spectral classes in the 
final classification. For some applications, it may be desirable to have an indication of the likelihood that a 
given pixel is actually a member of the class to which it was assigned. For this reason, the maximum 
likelihood classifier will save an image of the probability density function from each classification. These 
images will aid in identifying areas and classes of questionable accuracy. The probability density function 
images .for each stratum are used interactively during the classification process. They are also saved for 
future reference by users who wish to have access to information about the spatial variability and class 
variability of the classification probabilities. 

5.7 Alternative Classification Methods 

The classification methods described here are designed to be standardized and repeatable and to permit 
replication elsewhere under varying conditions. For some portions of the tristate Upper Midwest Gap 
Analysis Project, however, it may be desirable to consider alternative classification strategics. One example 
of such an alternative strategy is the use of carefully timed multiseason imagery designed to maximize the 
benefit of phcnological variability (e.g., Wolter et al. 1995). Before deciding on an alternative classification 
method, it is important to carefully examine the nature of the proposed classification strategy and to 
determine whether it satisfies all of the design considerations presented in this document. 

6. Post-Classification Processing 

As each scene is classified to an acceptable level of accuracy, it can be used to aid in classifying 
neighboring images. When an initial classification is completed for any given SCCU, it should be compared 
to all of its neighbors whose accuracy has already been assessed. Distinct differences along the boundary 
between the two scenes could indicate that the classification in question will need modifications. This 
process will help mitigate categorical edge-matching errors when the scenes or strata are finally stitched 
together. 
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After each SCCU has been classified, the wetlands, urban areas, and cloud-covered pixels extracted from 
it and separately classified are placed back in the image. Transportation features, such as roads and railroads, 
are then added into the classified image from ancillary sources such as USGS Digital Line Graphs. A variety 
of products will be generated from the classified imagery. Digital versions of the data will be made available 
in both raw and filtered formats, to meet the needs of different end users. For filtered products, a 
clump-and-sieve algorithm is used. Adjacent pixels sharing the same class are grouped into clumps. Clumps 
smaller than four pixels in size are deleted and the resulting holes are filled in by expansion of neighboring 
clumps. The clump-and-sieve process is performed separately on upland and wetland areas to prevent upland 
areas from extending into wetlands and vice versa. In addition, pixels classified as water are preserved 
regardless of clump size. Note that for filtered data, the probability density function images produced during 
maximum likelihood classification will not be applicable. In addition to digital data, hard-copy products can 
be generated at a variety of scales. Finally, to meet the national GAP project standards, the data will also be 
"vectorized" (converted to vector format) and aggregated to a 100-/40-ha minimum mapping unit at the 
Environmental Management Technical Center (Jennings 1994). 

Summary: 

1. Add any delineated areas with clouds back into the 
SCCU from which they were originally extracted. 

2. Add the classified wetlands pixels back into the SCCU 
from which they were originally extracted. 

Methods: 

1. Use Class Merge Model (Spatial Modeler), with 
clouds and full scene. If <raster> <> 0 use <raster>. 

2. Use Class Merge Model (Spatial Modeler), with 
wetlands and full scene. If <raster> <> 0 use 
< raste r>. 

3. Stitch    together    neighboring    SCCUs,    examining 
boundaries for discontinuities. 

4. Add the classified urban area pixels back into the 
classified scene. 

5.  Overlay transportation features from USGS Digital Line 
Graph files on top of the classified image. 

3.  Use Subset. 

4. Use Class Merge Model (Spatial Modeler), with 
urban areas and full scene. Select only "high 
intensity urban" and "low intensity urban" to be 
placed back in the full scene. 

5. Vector Overlay. 

7. Accuracy Assessment 

Few aspects of the land cover mapping process are as elusive and challenging as assessing the accuracy 
of the final products resulting from such efforts. The literature includes several recent treatises specifically 
focused on the subjects of classification accuracy assessment (e.g., Congalton 1991; Janssen and van der Wei 
1994) and land cover change-detection accuracy assessment (e.g., Khorram et al. 1994). These documents 
highlight the need to consider both the positional accuracy and thematic accuracy of any given data product. 

7.1 Positional Accuracy Considerations 

The data used for UMGAP classification have been registered to the Universal Transverse Mercator 
coordinate system (e.g., Universal Transverse Mercator or Wisconsin Transverse Mercator) and subsequently 
resampled (primarily using cubic convolution). Through the careful selection of numerous, well-defined, and 
well-distributed ground control points (GCPs), the positional accuracy (RMSE) of well-defined objects 
appearing in the TM imagery should be on the order of ± 0.5 pixels, or ± 15 m. Also, registration of one 
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TM scene to another is expected to be on the order of ± 0.5 pixels and no more than ± 1 pixel. Ideally, the 
georeferencing of each scene should be verified using a minimum of 10 GCPs (with a minimum of 2 GCPs 
in each quadrant of the scene) and 7.5-min quadrangles. Care should be taken to ensure that the same datum 
(e.g., NAD83) is used for the check as was used for the original scene georeferencing process. Scenes with 
RMSE values in excess of ± 1 pixel should be reregistered. 

7.2 Thematic Accuracy Considerations 

7.2.1  Anticipation of Multipurpose Use of Upper Midwest Gap Analysis Program Land Cover 
Data 

It is anticipated that UMGAP land cover data will be used over a range of geographic scales from the site 
to the statewide level. No single thematic accuracy assessment methodology is appropriate over this range 
of applications. Accordingly, the philosophy of the thematic accuracy assessment protocol for UMGAP is 
to provide sufficient raw information at a base level to enable a flexible range of potential accuracy 
assessment scenarios in various future application contexts. The following information relates to the 
collection of base level data only. 

7.2.2 Sample Unit 

The fundamental sample unit available for accuracy assessment is the polygon, for this is the unit within 
which the ground reference data are collected. A census of all pixels in the polygon is performed to 
determine the most abundant class within the polygon. In most cases, a single class should be clearly 
dominant because the ground reference data collection effort in which the polygons were delineated was 
designed to include only homogenous areas. The analyst should visually examine accuracy assessment 
polygons to ensure that this is the case. 

7.2.3 Reference Data for Accuracy Assessment 

Section 3, Ground Reference Data, describes some of the methods used for collecting reference data for 
UMGAP. The methods used are not completely random because of the focus on rapid and cost-effective 
acquisition of a large volume of representative data for training purposes. Only a portion of the data collected 
are required for training, and the remainder can be used to help assess the accuracy of the final 
classifications. It is important to note, however, that many of the statistical techniques described below are 
based upon an assumption of randomness. In particular, the fact that reference polygons are selected and 
delineated manually results in unequal (and unknowable) probabilities of inclusion for different points on 
the ground. This may introduce a bias into the estimators for categorical and overall accuracy and may also 
affect the estimators for the variance of these quantities (Czaplewski 1994). Future investigations arc planned 
to evaluate the effectiveness of data collection methods for a variety of accuracy assessment strategies. 

7.2.4 Classification Error Matrices 

The most widely used accuracy assessment techniques for land cover classification involve the use of 
error matrices as the primary basis for comparing, on a category-by-category basis, the relation between the 
known reference data (columns) and the corresponding results of the automated classification (rows). In 
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addition to compilation of the complete matrix, the following descriptive statistics can be computed: overall 
accuracy, producer accuracy of each category, user accuracy of each category, the two-tailed 95% confidence 
interval of the overall accuracy and the producer and user accuracies, and the Kappa (KHAT) statistic for 
the overall classification and each individual category (Lillesand and Kiefer 1994). Examples of the 
computation of these descriptive statistics are contained in Appendix C. 

7.3 Other Accuracy Assessment Products 

Certain specialized accuracy assessment products will be available from the UMGAP classification 
process. These include storage and cartographic portrayal of the probability density function value associated 
with the most probable class assignment of each pixel by the maximum likelihood algorithm. Also, the 
integration of the accuracy assessment and training sampling process permits depiction of the exact areas 
used for accuracy assessment. The polygons used for this process are stored in a vector file that is 
automatically registered to the same coordinate system as the image data. Thus, it is possible to document 
the distribution of accuracy assessment sites by overlaying this vector file directly on the raw imagery, on 
a USGS topographical map, or another georeferenced data source. 

8. Conclusion 

This document was written to explain and codify the image processing procedures in the UMGAP land 
cover classification being performed with multi-date TM data. These procedures continue to evolve as they 
are employed in a production environment. Also, they are intended to be the basis for the initial land cover 
classification involved in UMGAP. New data sources and methods continually enhance the approaches 
described herein. Our objective was to provide a firm foundation for these anticipated enhancements. 
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Appendix A. Upper Midwest Gap Analysis Program Classification System 

Base categories are in boldface. Extended categories are in plain text. Eight-bit numeric ID numbers are 
listed in parentheses (). * denotes classes limited to Minnesota. $ denotes classes limited to Wisconsin. 

(100) 

(110) 

(150) 

(160) 

1 Urban/developed 
(101) 1.1 High intensity 
(104) 1.2 Low intensity 
(107) 1.3 Transportation 

2 Agriculture 
(HI) 2.1 Herbaceous/field crops 

(112) 2.1.1 Row crops 
(113) 2.1.1.1         Corn 
(114) 2.1.1.2        Peast 
(115) 2.1.1.3        Potatoes $ 
(116) 2.1.1.4        Snap beans $ 
(117) 2.1.1.5         Soybeans t 
(118) 2.1.1.6        Other 

(124) 2.1.2 Forage crops 
(125) 2.1.2.1        Alfalfa! 

(131) 2.1.3 Small grain crops $ 
(132) 2.1.3.1         Oats^; 
(133) 2.1.3.2        Wheat $ 
(134) 2.1.3.3        Barley! 

(140) 2.2 Woody 
(141) 2.2.1 Nursery 
(144) 2.2.2 Orchard 
(147) 2.2.3 Vineyard 

3 Grassland 
(151) 3.1 Cool season 
(154) 3.2 Warm season 
(157) 3.3 Old field 

4 Forest 
(161) 4.1 Coniferous 

(162) 4.1.1 Jack pine 
(163) 4.1.2 Red/white pine 
(164) 4.1.3 Scotch pine ! 
(165) 4.1.4 Hemlock | 
(166) 4.1.5 White spruce 
(167) 4.1.6 Norway spruce $ 
(168) 4.1.7 Balsam fir 
(169) 4.1.8 Northern white-cedar 
(173) 4.1.9 Mixed/other coniferous 

(175) 4.2 Broad-leaved deciduous 
(176) 4.2.1 Aspen 
(177) 4.2.2 Oak 

(178) 4.2.2.1         White oak 
(179) 4.2.2.2        Northern pin oak 
(180) 4.2.2.3        Red oak 

(181) 4.2.3 White birch 
(182) 4.2.4 Beech ! 
(183) 4.2.5 Maple 

(184) 4.2.5.1         Red maple 
(185) 4.2.5.2        Sugar maple 

(186) 4.2.6 Balsam poplar * 
(187) 4.2.7 Mixed/other broad-leaved deciduous 
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(190)       4.3 Mixed deciduous/coniferous 
(191)       4.3.1        Pine-deciduous * 

(192) 4.3.1.1 Jack pine-deciduous * 
(193) 4.3.1.2        Red/white pine-deciduous * 

(194)       4.3.2       Sprucc/fir-deciduous * 

(200) 

(210) 

5 Open water 

6 Wetland 
(211) 6.1 Emergent/wet meadow 

(212) 6.1.1        Floating aquatic * 
(213) 6.1.2       Fine-leaf sedge * 
(214) 6.1.3        Broad-leaved sedgc-grass * 
(215) 6.1.4       Sphagnum moss * 

(217) 6.2 Lowland shrub 
(218) 6.2.1        Broad-leaved deciduous 
(219) 6.2.2        Broad-leaved evergreen 
(220) 6.2.3        Needle-leaved 

(222) 6.3 Forested 
(223) 6.3.1        Broad-leaved deciduous 

(224)       6.3.1.1 Red maple 
(225)       6.3.1.2 Silver maple * 
(226)       6.3.1.3 Black ash 
(227)       6.3.1.4 Mixed/other deciduous * 

(229) 6.3.2 Coniferous 
(230)       6.3.2.1 Black spruce 
(231)       6.3.2.2 Tamarack 
(232)       6.3.2.3 Northern white-cedar 

(234)       6.3.3 Mixed deciduous/coniferous 

(240)       7 Barren 
(241) 7.1 Sand 
(242) 7.2 Bare soil 
(245) 7.3 Exposed rock 
(246) 7.4 Mixed 

(250)       8 Shrubland 
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Appendix B. Sample Ground Reference Data Forms and Definitions 

Please check the land cover type associated with the polygon-ID. Choose that which best describes the land cover; land cover 
type definitions are provided on an enclosed sheet. Please read the definitions prior to groundtruthing. Record additional 
comments, such as species information for nonforested cover types, or percent composition for mixed categories, such as shrub and 
grassland, in the comments section. 

NAME: DATE : 
NAPP PHOTO-ID: POLYGON-ID: 
(1) COVER TYPE 
URBAN/DEVELOPED SHRUBLAND BARREN WETLAND 

High Intensitv Urban Upland Shrub Sand Emergent/Wet Meadow 
Low Intensitv Urban Bare Soil Lowland Shrub 

GRASSLAND Exposed Rock Coniferous 
AGRICULTURE Grassland Mixed Broad-leaved Deciduous 

Row Crops Broad-leaved Evergreen 
Forage Crops OPEN WATER Forested Wetland 

Open Water Coniferous 
FOREST Broad-leaved Deciduous 

Coniferous Mixed Coniferous/ 
Broad-leaved Deciduous Broad-leaved Deciduous 
Mixed Coniferous/Broad-leaved Deciduous 
Clearcut/Young Plantation - If clearcut, was area logged within the past 3 years? Circle: Yes or No 

Comments: 

(2) FOREST SPECIES 
Write the estimated percentage of the species present in the space provided. 
The percentages should total the canopy cover percentage in section 3. 

 % Jack Pine  % Red Maple 
 % Red Pine  % Sugar Maple 
 % White Pine  % Silver Maple 
 % Black Spruce  % Green Ash 
 % White Spruce  % Black Ash 
 % Balsam Fir  % White Birch 
 % Hemlock  % Yellow Birch 
 % White Cedar  % River Birch 
 % Tamarack  % Bass wood 
 % Aspen 
Are trees at mature height? Circle: Yes or No 
Comments:  

. % Alder 

. % Red/Black 
Oak 

. % White/Bur 
Oak 

. % N. Pin Oak 

. % Slippery Elm 

. % Amer. Elm 

. % Black Cherry 

. % Black Willow 

. % Cottonwood 
% Beech 

Other Species 

(3) CANOPY AND UNDERSTORY 

Canopy cover is:    % 
If canopy is less than 80%, mark the understory vegetation present: 
 Small trees  Saplings 
 Shrubs  Herbaceous Vegetation 

Comments: 

(4) METHOD OF IDENTIFICATION 
 Field Verification (Able to identify location and access the area circled.) 
 Windshield Survey (Could not enter identified area, but identified species from outside of area.) 
 Inaccessible Polygon 
 Photo interpreted / Knowledge of area 

(5) CONFIDENCE LEVEL OF ASSESSMENT 
  High (good)   Medium 

(6) ADDITIONAL COMMENTS 

. Low (questionable) 
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Definitions to Accompany Groundtruth Data Sheets 

I. URBAN/DEVELOPED 

Structures and areas associated with intensive land use. 

a. High Intensity - Greater than 50% solid impervious cover of synthetic materials. 

Examples: parking lot, shopping mall, or industrial park 

b. Low Intensity - Less than 50% solid impervious cover of synthetic materials. May have some 
interspersed vegetation. 

Examples: sparse development, single family residence 

Note: Areas meeting the requirements of both Urban/Developed and Forest classes should be 
classified in the Urban/Developed category, (i.e., residential areas with greater than 10% crown 
closure of trees would be classified as Urban/Developed, rather than forest.) 

II. AGRICULTURE 

Land under cultivation for food or fiber (including bare or harvested fields). 

Examples: corn, peas, alfalfa, wheat, orchards, cranberry bogs 

III. GRASSLAND 

Lands covered by noncultivated herbaceous vegetation predominated by grasses, grass-like plants 
or forbs. 

Examples: cool or warm season grasses, restored prairie, abandoned fields, golf course, sod farm, 
hay fields 

IV. FOREST 

An upland area of land covered with woody perennial plants, the tree reaching a mature height of 
at least 6 feet tall with a definite crown. Crown closure of the area must be greater than 10%. 

a. Coniferous - Upland areas whose canopies have a predominance (greater than 33-1/3%) of 
cone-bearing trees, reaching a mature height of at least 6 feet tall. If the deciduous species group 
is present, it should not exceed one-third (33-1/3%) of the canopy. 

Examples: Jack Pine, Red Pine, White Spruce, Hemlock, Tamarack 

b. Broad-leaved Deciduous - Upland areas whose canopies have a predominance (greater than 
33-1/3%) of trees, reaching a mature height of at least 6 feet tall, which lose their leaves 
seasonally. If the coniferous species group is present, it should not exceed one-third (33-1/3%) of 
the canopy. 
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Examples: Aspen, Oak, Maple, Birch 

c. Mixed Coniferous/Broad-leaved Deciduous - Upland areas where deciduous and evergreen 
trees are mixed so that neither species group (broad-leaved deciduous or coniferous) is less than 
one-third (33-1/3%) dominant in the canopy. 

Examples: Hemlock/Northern Hardwood forest (40% Coniferous, 60% Broad-leaved Deciduous) 

d. Clearcut/Young Plantation - Area used for tree production that has been recently cut, and is 
generally devoid of established vegetation cover, with the continued intention of tree production. 
Also an area that has been very recently replanted with trees (usually as a monoculture). If the 
area has been logged within the last 3 years, please indicate this in the comments section of the 
groundtruth sheet. 

Note: Areas that meet the requirements of both Forest and Forested Wetland categories should be 
classified in the Forested Wetland category. 

V. OPEN WATER 

Areas of water with no vegetation present. 

Examples: Lake, Reservoir, River, Retaining Pond 

VI. WETLAND 

An area with water at, near, or above the land surface long enough to be capable of supporting 
aquatic or hydrophytic vegetation, and with soils indicative of wet conditions. 

a. Emergent/Wet Meadows - Persistent and nonpersistent herbaceous plants standing above the 
surface of the water or soil. 

Examples: Cattails, Marsh Grass, Sedges 

b. Lowland Shrub - Woody vegetation, less than 20 feet tall, with a tree cover of less than 10%, 
and occurring in wetland areas. 

Broad-leaved Deciduous examples: Willow, Alder, Buckthorn 
Broad-leaved Evergreen examples: Labrador-tea, Leather-leaf, Bog Rosemary 
Coniferous examples: Stunted black spruce 

c. Forested Wetland - Wetlands dominated by woody perennial plants, with a canopy cover 
greater than 10%, and trees reaching a mature height of at least 6 feet. 

Coniferous examples: Black Spruce, Northern White Cedar, Tamarack 
Broad-leaved Deciduous examples: Black Ash, Red Maple, Swamp White Oak 
Mixed Broad-leaved Deciduous/Coniferous: Mixture of the species above. See Upland 
Mixed Broad-leaved Deciduous/Coniferous for group proportions. 
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Note: If an area meets the requirements of Forested Wetland, it should take precedence over any 
other "Forest" category. 

VII. BARREN 

Land of limited ability to support life and in which less than one-third (33-1/3%) of the area has 
vegetation or other cover. If vegetation is present, it is more widely spaced and scrubby than that 
in shrubland. 

Note: If the area meets the requirements of both Agriculture and Barren, it should be placed in 
the Agriculture class. Also, if the area is wet and meets the requirements of Wetlands, it should 
be placed in the appropriate Wetland category. 

a. Sand 
b. Bare Soil 
c. Exposed Rock 
d. Mixed - an area that has less than two-thirds (66-2/3%) dominant cover of one of the above 
Barren classes. 

VIII. SHRUBLAND 

Upland Shrub - Vegetation with a persistent woody stem, generally with several basal shoots, 
low growth of less than 20 feet, and coverage of at least one-third (33-1/3%) of the land area. 
Less than 10% tree cover interspersed. 

Examples: Scrub Oak, Buckthorn, Sumac 

If the area is shrubland as a result of logging within the past 3 years, please indicate this in the 
comments section of the groundtruth sheet. 

Note: See WETLAND (Lowland Shrub) for other shrub category 

EXAMPLES 

Below are some examples of how certain mixtures of forest are classified. An explanation is provided. 

40% Maple, 10% Aspen, 5% Balsam Fir, 10% White Pine Broad-leaved Deciduous 

This is called Broad-leaved Deciduous because there is one species that composes more than 
33-1/3% of the canopy. 

10% Aspen, 20% Maple, 10% Oak, 10% Balsam Fir, 157c Hemlock, 30% White Pine Mixed 
Broad-leaved Deciduous/Coniferous 

This is called Mixed Broad-leaved Deciduous/Coniferous because there are greater than 
33-1/3% of each species group in the canopy. 

35% Aspen, 20% Oak, 10% Balsam Fir, 20% White Pine, 5% Hemlock  
Mixed Broad-leaved Deciduous/Coniferous 
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This is called Mixed Broad-leaved Deciduous/Coniferous because there are greater than 
33-1/3% of each species group in the canopy, even though there is over 33-1/3% of Aspen. 

20% Aspen, 80% Open Canopy with grasses in understory Broad-leaved Deciduous 

This is called Broad-leaved Deciduous because only 10% canopy closure defines the forest class. 
A note on the groundtruth sheet should be made about the grass understory. 
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Appendix C. Methods for Reporting Accuracy Assessment Results 

Note: The following document parallels and is based on sample data from the discussion of accuracy 
assessment in Lillesand and Kiefer (1994), pp. 615-618. For further information about these topics, please 
refer to that text. 

The classification error matrix is a convenient and comprehensible method for displaying the results of 
the accuracy assessment process. Reference data are listed in the columns of the matrix and the classification 
data are listed in the rows. The major diagonal of the matrix represents the number of correctly classified 
samples; errors of omission are represented by the nondiagonal column elements, and errors of commission 
are represented by nondiagonal row elements. Table C.l is an example of a classification error matrix, 
including six land cover categories. 

Table C.1 Error matrix resulting from classification of random test pixels (based on 
Lillesand and Kiefer [1994], Table 7.4, p. 618). 

 Reference Data  

Water Sand      Forest Urban Corn Hay 
Row 

Total 
Water 226 0 0 12 0 1 239 
Sand 0 216 0 92 1 0 309 
Forest 3 0 360 228 3 5 599 
Urban 2 108 2 397 8 4 521 
Corn 1 4 48 132 190 78 453 
Hay 1 0 19 84 36 219 359 
Column 
Total 233 328 429 945 238 307 2840 

Using the data from Table C.l, accuracy percentages can be calculated for the overall classification and 
for each category separately, as demonstrated in Table C.2. There are two distinct accuracy figures for the 
individual categories. The producer's accuracy is calculated by dividing the number of correctly classified 
samples by the column total for the category. The user's accuracy is calculated by dividing the number of 
correctly classified samples by the row total for the category. 

Table C.2 Overall accuracy and producer's/user's accuracy by category. 

Producer's Accuracy User's Accuracy 

Water: 226/233 = 97.00% 
Sand: 216/328 = 65.85% 
Forest: 360/429 = 83.92% 
Urban: 397/945 = 42.01% 
Corn: 190/238 = 79.83% 
Hay: 219/307 = 71.34% 

Water: 226/239 = 94.56% 
Sand: 216/309 = 69.90% 
Forest: 360/599 = 60.10% 
Urban: 397/521 = 76.20% 
Corn: 190/453 = 41.94% 
Hay: 219/359 = 61.00% 

Overall accuracy = (226 + 216 + 360 + 397 + 190 + 219)/2,480 = 64.84% 

Two-tailed 95% confidence intervals can be computed for the overall classification and for each 
category, as follows (Thomas and Allcock 1984; Jensen 1986; Snedecor and Cochran 1989): 
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C/=p±[l .96.^7^(50/«)] „       .     ,. 1 J [Equation I 

where      p = percent correct calculated above 
q= 100-p 
n = number of samples 

Table C.3 demonstrates the process of computing confidence intervals for overall accuracy and for 
category accuracy. 

Table C.3 Computation of 95% confidence intervals (two-tailed) for overall accuracy and 
producer's/user's accuracy by category. 

95% CI for overall accuracy: 

64.84 ±[l -96-v/64.84-35.16 / 2480+(50 / 2480)]=(62.94, 66.74) 

95% CI for producer's accuracy by class: 

Water: 97.00 ±[l .96«i/97.00»3.00 / 233+(50 / 233)]=(94.60, 99.40) 

Sand:   65.85 ±[l.96«^65.85-34.15 / 328+(50 / 328)]=(60.57, 71.14) 

Forest: 83.92 ±[l .96«i/83.92» 16.08 / 429+(50 / 429)]=(80.32, 87.51) 

95% CI for user's accuracy by class: 

Water: 94.56 ±[l.96V94.56-5.44 / 239+(50 / 239)]=(91.48, 97.65) 

Sand:   69.90 ±[l .96»v/69.90»30.10 / 309+(50 / 309)]=(64.63, 75.18) 

Forest: 60.10 ±[l .96^60.10*39.90 / 599+(50 / 599)]=(56.10, 64.11) 

In addition to the figures provided in Tables C.2 and C.3, another measure of accuracy is widely used in 
accuracy assessment of land cover classifications. The Kappa, or KHAT, statistic describes the difference 
between the observed classification accuracy (represented by Table C.2) and the theoretical chance 
agreement that would result from a random classification (Congalton and Mead 1983; Rosenfield and 
Fitzpatrick-Lins 1986). For the overall classification, Kappa is computed as follows: 

K=     ^   "  ^    "  " [Equation 2] 
W2-E (*;♦*.,) 

where      N = total number of samples in all categories 
S (xü) = number of correctly classified samples 
S(xi+»x+i) = sum of products of each category's row and column totals in the error matrix 
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For individual categories, this simplifies to the following: 

K- 
N*x. -x. x . 

[Equation 3] 

where      N = total number of samples in all categories 
Xn = number of correctly classified samples in the specified category 
Xi+ = row total in the error matrix for the specified category 
x+i = column total in the error matrix for the specified category. 

The process of calculating Kappa statistics is demonstrated in Table C.4 below. 

Table C.4 Kappa (KHAT) statistics for overall accuracy and category accuracy. 

Kappa statistic for overall accuracy: 

N = 2480    S(xii) = 226 + 216 + 360 + 397 + 190 + 219 = 1608 
S(Xi+.x+i)= (239*233) + (309*328) + (599*429) + (521*945) + (453*238) + (359*307) = 1,124,382 
Kappa = {[(2480*1608) - 1,124,382] / [(2480*2480) - 1,124,382]) = 0.5697 

Kappa statistic for category accuracy: 

Water: Kappa = {[(2480*226) - (239*233)] / [(2480*239) - (239*233)]) = 0.9400 
Sand: Kappa = {[(2480*216) - (309*328)] / [(2480*309) - (309*328)]} = 0.6532 
Forest:   Kappa = {[(2480*360) - (599*429)] / [(2480*599) - (599*429)]} = 0.5175 

The variance of Kappa (Hudson and Ramm 1987) can be calculated as follows: 

2     1 
K  N 

T{\ -T) | 2(1 -T)(2TU-V) + (1 -T)\W-AUf 

(l-U)2 (l-U)3 (\-U)4 
[Equation 4] 

where T £*„ 
N 

U- 

V- 

N2 

.Eh- • (*,-+*+,•>] 
N2 

w- .EEh* (*,-+*+,•)] 
N3 
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The process of calculating the variance of Kappa is demonstrated in Table C.5 below. 

Table C.5 Kappa (KHAT) variance. 

N = 2480 

S(xü )= 226 + 216 + 360 + 397 + 190 + 219 = 1608 

S(xi+*x+i) = (239*233) + (309-328) + (599*429) + (521*945) + (453*238) + (359*307) = 1,124,382 

£[xii*(xi+ + x+i)] = [226*(239+233)] + [216*(309+328)] + [360*(599+429)] + 

[397*(521+945)] + [190(453+238)] + [219*(359+307)] = 1,473,490 

S[xij*(x.i+ + x+i)
2] = [226*(239+233)2] + [0*(239+328)2] + [3*239+429)2] + ... 

... + [78*(359+238)] + [219*(359+307)2] = 2.279,167,222 

T = (1608/2480) = 0.648387 

U= [1,124,382 /(2480)2] = 0.182814 

V = [ 1,473,490 / (2480)2] = 0.239576 

W = [2,279,167,222 / (2480)3] = 0.149424 

o2(K) = (1/2480) • [ 0.341395 + -0.004595 + 0.004364 ] = 0.0001376 

The Kappa statistic is often used to compare the results of multiple classifications (Congalton and Mead 
1983; Congalton 1991). After calculating Kappa and its variance o2(K) for each classification, a test statistic 
is computed as follows: 

K -K 1    ^^Z [Equation 5] 

f 
This test statistic follows a Gaussian (normal) distribution and can be used to determine whether 

differences between the two classifications are significant. Significance at 95% is obtained by comparing 
the Z-score to the equivalent value (1.96) from the normal tables. If the Z-score is greater than 1.96, the 
classification accuracy results are significantly different. The normal tables can also be used to test 
significance at other levels (e.g., 90%, 99%, or 99.9%) as desired. 

This process is demonstrated in Table C.6 below. 

Table C.6 Hypothesis test for comparing Kappa statistics. 

Statistics from Classification 1: 

K,= 0.5697 [from Table 4] 
o2(K,) = 0.0001376 [from Table 5] 

Statistics from Classification 2: 

K2 = 0.6024 
o2(K2) = 0.002539 
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Statistics from Classification 3: 

K3 = 0.6203 
a2(K3) = 0.0000794 

Threshold for significance at 95% = 1.96 [from normal tables] 

(0.6024-0.5697)_=06321 

'    ^0.002539 +0.0001376 

(0.6203-0.5967)_=34350 

'    \/0.0000794+0.0001376 

[not significant] 

[significant] 
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